Section A:

Concussion Recognition, Initial Medical Assessment, Management

Introduction

Concussion is a condition that exists along a clinic-pathological spectrum of traumatic brain injury (TBI) and can result in non-specific physical, cognitive, sleep, and emotional symptoms. To provide a comprehensive medical assessment in a patient with acute head and neck trauma, a more severe form of TBI, cervical spine injury, medical conditions, mental health conditions, and neurological conditions that can present with non-specific neurological symptoms including red flags must be ruled out. This requires a comprehensive clinical history, a comprehensive physical examination, ordering and interpreting necessary diagnostic tests, and initiating referrals to medical specialists and healthcare professionals as needed. Patients diagnosed with a concussion must be provided with education and guidance on how to manage their symptoms and how to make a safe and gradual return to school/activity/sport. The majority of children and adolescents with an acute concussion will make a complete recovery within 1-4 weeks. Those with prolonged symptoms (symptoms that last more than 4 weeks following the acute injury) can benefit from a referral to interdisciplinary teams and experienced healthcare professionals who are optimally trained to evaluate and treat the heterogeneous causes of these symptoms. When providing medical clearance to return to activities with a risk of future concussion, patients should be managed on an individualized basis. Interdisciplinary concussion teams may be recommended to manage recovery in situations in which patients have prolonged symptoms, complex medical histories, repeated concussions, or pre-injury conditions or diagnoses. Medical and healthcare professionals should work together with patients, their families, and those involved in their lives (teachers, coaches, employers, friends, etc.) using a team and family-centred approach to best manage the needs of the patient after a concussion and promote positive health outcomes. Proper concussion recognition in children and adolescents requires all involved in a child’s life to be educated on the signs and symptoms of this condition and to collaborate to ensure that youth with suspected concussion are immediately removed from play or activity and directed to the most appropriate care. The following sections provide recommendations specific to concussion recognition, initial medical assessment, and management.

icon imgDomain 1: Concussion Recognition and Directing to Care

Introduction:

All school and sport stakeholders including students, athletes, parents, teachers, coaches, officials, and healthcare professionals play an important role in recognizing suspected concussions and supporting the child when returning to school, sport, work, and other activities.

Tool 1.1: Pediatric Concussion – The Role of School Boards Community Sports Organizations and Centres

Tool 1.2: Concussion Recognition Tool 5

Tool 1.3: Manage Acute and Prolonged Symptoms Algorithm

Recommendations

LEVEL OF EVIDENCE A = Consistent, good-quality, patient-oriented evidence (example: at least one large randomized control trial, meta-analysis or systematic review with homogeneity, or large, high- quality, multi-centre cohort study)B = Inconsistent or limited-quality patient-oriented evidence (example: smaller cohort studies, case studies or control trials with limitations)C = Consensus, usual practice, opinion or weaker-level evidence

1.1a

School boards, sports organizations, and community centres should provide pre-season concussion education and conduct a review of all concussion policies in effect within the school or sport setting.

Level of Evidence:  

1.1b

School boards, sports organizations, and community centres should ensure updated policies are in place to recognize and accommodate a child/adolescent who has sustained a concussion.

Level of Evidence:  

Tool 1.1: Pediatric Concussion- The Role of School Boards, Community Sports Organizations, and Centres

1.2

Remove the child/adolescent from the activity immediately if a concussion is suspected for immediate assessment and to avoid another injury. 

Level of Evidence:   

Do not leave the child alone and contact the parent/caregiver immediately. Do not let the child/adolescent return to sport (practice or game play) or other activities that day. “If in doubt, sit them out.”

A concussion should be suspected:

  • In any child/adolescent who sustains a significant impact to the head, face, neck, or body and demonstrates/exhibits any of the visual signs of a suspected concussion or reports any symptoms of a suspected concussion as detailed in the Concussion Recognition Tool 5 (Tool 1.2). 

Premature return to activities and sport can lead to another injury. Another blow to the head may complicate the injury further and have a longer recovery time due to the higher risk of prolonged symptoms. Severe brain swelling or cerebral edema after a concussion is very rare but potentially fatal.

Suggested concussion tools to share with teachers, coaches, parents, peers, and others

1.3

Recommend an emergency medical assessment for a child/adolescent with any of the “red flag” symptoms. 

Level of Evidence:   

If a child/adolescent demonstrates any of the ‘Red Flags’ indicated by the Concussion Recognition Tool 5, a more severe head or spine injury should be suspected and an emergency medical assessment is required. Consider arranging an ambulance service as necessary to facilitate urgent medical assessment at the nearest hospital and execution of the Emergency Action Plan for your organization. When calling an ambulance, describe the specific red flags symptoms over the phone. 

Red flag symptoms include:

  • Severe or increasing headache 
  • Neck pain or tenderness
  • Double vision
  • Weakness or numbness in arms/legs
  • Seizure or convulsions
  • Loss of consciousness
  • Deteriorating conscious state
  • Repeated vomiting
  • Increasingly restless, agitated or combative state
  • Slurred speech 

Suggested tools to help identify “Red Flag” symptoms

1.4 

Concussion should be suspected and diagnosed as soon as possible to maintain health and improve outcomes. Concussion can be suspected in the community by healthcare professionals, parents, teachers, coaches, and peers. Those with a suspected concussion should be referred to a physician or nurse practitioner to perform a thorough medical assessment to exclude more severe injuries, consider a full differential diagnosis, and confirm the diagnosis of concussion. 

Level of Evidence:   

Tool 1.3: Manage Acute and Prolonged Concussion Symptoms Algorithm

Suggested tool for the general community to suspect a concussion

Suggested tools for experienced healthcare professionals to suspect a concussion:

  • Link: Sport Concussion Recognition Tool 5 (SCAT5) for Children aged 5-12 English / French
  • Link: SCAT5 for Athletes aged 13+ English / French 

Tools and Resources

Living Guideline Tools
Links to Toolkits and Online Resources for School Concussion Policies:
Concussion Recognition and Directing to Care Online Tools to Consider:

References

Boutis, K., Weerdenburg, K., Koo, E., Schneeweiss, S., & Zemek, R. (2015). The diagnosis of concussion in a pediatric emergency department. Journal of Pediatrics, 166(5), 1214–1220.e1. https://doi.org/10.1016/j.jpeds.2015.02.013

Bramley, H., McFarland, C., Lewis, M. M., Shaffer, M. L., Cilley, R., Engbrecht, B., … Dias, M. S. (2014). Short-term outcomes of sport- and recreation-related concussion in patients admitted to a pediatric trauma service. Clinical Pediatrics, 53(8), 784–790. https://doi.org/10.1177/0009922814533403

Elbin, R. J., Sufrinko, A., Schatz, P., French, J., Henry, L., Burkhart, S., … Kontos, A. P. (2016). Removal From Play After Concussion and Recovery Time. Pediatrics, 138(3), e20160910–e20160910. https://doi.org/10.1542/peds.2016-0910

Mckinlay, A., Ligteringen, V., & Than, M. (2014). A comparison of concussive symptoms reported by parents for preschool versus school-aged children. Journal of Head Trauma Rehabilitation, 29(3), 233–238. https://doi.org/10.1097/HTR.0b013e3182a2dd7f

Taubman, B., Rosen, F., McHugh, J., Grady, M. F., & Elci, O. U. (2016). The Timing of Cognitive and Physical Rest and Recovery in Concussion. Journal of Child Neurology, 31(14), 1555–1560. https://doi.org/10.1177/0883073816664835

Terwilliger, V. K., Pratson, L., Vaughan, C. G., & Gioia, G. A. (2016). Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes. Journal of Neurotrauma, 33(8), 761–765. https://doi.org/10.1089/neu.2015.4082

icon imgDomain 2: Initial Medical Assessment and Management

Introduction:

A thorough medical assessment by a physician or nurse practitioner should be performed on all children and adolescents with a suspected concussion. This assessment includes a full differential diagnosis (ruling out: a more severe TBI, cervical spine injury, medical conditions, mental health conditions, and neurological conditions that can present with non-specific neurological symptoms including red flags) and a confirmation of the diagnosis of concussion. If a more severe injury or other conditions identified at initial assessment are suspected, emergent referrals should be made to appropriate healthcare professionals. Acute signs and symptoms should be considered in context with the child/adolescent’s normal pre-injury performance, especially for those with learning and communication deficits, ADHD, and/or physical disabilities.

At the initial assessment, verbal and written information should be shared regarding the course of recovery and about when the child/adolescent can return-to-school/activity/sport and work. Patients and their parents and/or caregivers need to know that most patients recover fully from concussion even though the recovery rate is variable and unpredictable. Providing information reduces anxiety, helps set realistic expectations, promotes recovery, and prevents re-injury.

Some children/adolescents will continue to have symptoms at one month and beyond. In these situations, the healthcare professional should refer the patient to an interdisciplinary concussion team for individualized care that targets specific prolonged symptoms. Findings from the patient’s clinical history and initial assessment can identify patients who may have an elevated risk of experiencing prolonged symptoms following concussion. Identifying patients at risk for delayed recovery in the acute stage allows for early supportive care, close monitoring for prolonged symptoms, and an opportunity to consider early referral (before 4-weeks post-acute injury) to an interdisciplinary concussion team. Prolonged rest beyond the first 24-48 hours after a concussion is not recommended and may cause more harm than good. Return to physical and cognitive activity should be gradual and individualized based on activity tolerance and symptom presentation (e.g., the patient is able to engage in an activity without worsening of post-concussion symptoms). Full-contact sport or high-risk activities where there is a risk for repeat concussion should be avoided until 1) post-concussion symptoms have subsided, 2) the child/adolescent has returned to full school activities without accommodations related to post-concussion symptoms, and 3) child/adolescent has medical clearance to return to full-contact sport and high-risk activities following the completion of a return-to-sport protocol.

Upon discharge from the initial assessment from the Emergency Department or Primary Care Provider (physician or nurse practitioner), families should be provided with written instructions which include red flags to return for urgent re-assessment. Families should be informed that most patients recover fully from concussion even though the recovery rate is variable; this will help set realistic expectations, promote recovery and prevent re-injury.

Tool 1.3: Manage Acute and Prolonged Symptoms Algorithm

Recommendations

LEVEL OF EVIDENCE A = Consistent, good-quality, patient-oriented evidence (example: at least one large randomized control trial, meta-analysis or systematic review with homogeneity, or large, high- quality, multi-centre cohort study)B = Inconsistent or limited-quality patient-oriented evidence (example: smaller cohort studies, case studies or control trials with limitations)C = Consensus, usual practice, opinion or weaker-level evidence

2.1

Physicians or nurse practitioners should perform a comprehensive medical assessment on all children/adolescents with a suspected concussion or with acute head or spine trauma.  

Tool 1.3: Manage Acute and Prolonged Symptoms Algorithm

Include a clinical history, physical examination, and the evidence-based use of diagnostic tests or imaging as needed.

2.1a

Take a comprehensive clinical history.

Level of Evidence:

Details that should be collected in the clinical history include:

  • Patient demographics (e.g., age, sex, gender).
  • Assess injury mechanism and symptoms at the time of injury.
  • Assess symptom burden at the time of initial presentation.
    • Number of symptoms.
    • Severity of symptoms.
    • Type of symptoms.
  • Presence of loss of consciousness, post-traumatic amnesia, and red flags (seizures, neck pain, focal neurological deficits).
  • Current post-concussion symptoms (using age-appropriate standardized symptom inventory).
  • Review mental health (Domain 8: Mental Health).
  • Past medical history (e.g., previous concussions, migraine or non-specific headaches, mental health disorders, coagulopathy). Note the duration until recovery from previous concussions (i.e., within 7-10 days or prolonged).
  • Allergies/immunizations.
  • Ask whether the child/adolescent is taking any substances or medications: Prescribed or over-the-counter medications or supplements, alcohol, or recreational drugs including cannabis. These substances may mask or modify concussion symptoms.

Ask about school, activities, work, and sports participation.

2.1b

Note common modifiers that may delay recovery and use a clinical risk score to predict risk of prolonged symptoms.

Level of Evidence:

Link: Predicting Persistent Post-Concussive Problems in Pediatrics (5P): Score Calculator.

Modifiers that may delay recovery:

  • Age (increased risk with increased age).
  • Sex (female).
  • Personal and family history of migraines.
  • History of learning or behavioural difficulties.
  • Personal and family history of mental health.
  • Family socioeconomic status/education.
  • High pre-injury symptom presentation.

2.1c

Perform a comprehensive physical examination.

Level of Evidence:  

  • Vital signs (resting heart rate and blood pressure).
  • Level of consciousness (GCS).
  • Mental status.
  • A complete neurological examination (cranial nerve, motor, sensory, reflex, cerebellar, gait and balance testing) (Tool 2.1: Physical examination).
  • A cervical spine examination (palpation, range of motion, provocative cervical spine tests) (Tool 2.1: Physical examination).
  • An examination of the visual and vestibular systems.

Online tools to consider:

2.1d

Consider CT of the brain or cervical spine only in patients whom, after a medical assessment, a structural intracranial or cervical spine injury is suspected; do not conduct routine neuroimaging for the purpose of diagnosing concussion.

Level of Evidence: CT. MRI.

Most children/adolescents who sustain an acute head injury or suspected concussion do not need diagnostic imaging. 

Use the following tools, as appropriate, to determine the need for CT imaging in patients with acute head trauma:

Although validated clinical decision-making rules are highly sensitive, these tools are meant to assist but not replace clinical judgment. CT scans should be used judiciously as the exposure of children/adolescents to the effects of ionizing radiation carries a small increased lifetime risk of cancer. If a structural brain injury is suspected in a patient with acute head trauma undergoing initial medical assessment in the office setting, urgent referral to an Emergency Department should be arranged.

Diagnostic imaging of the spine should be considered when symptoms are suggestive of structural cervical spine injury. Imaging should be considered in patients with severe neck pain, tenderness or clinical evidence of radiculopathy or myelopathy. The choice of imaging modality (plain radiographs, CT or MRI of the cervical spine) should be guided by the suspected pathology.

Patients with positive traumatic findings observed on diagnostic imaging of the brain or spine should be urgently referred to a neurosurgeon for consultation.

2.2

Provide verbal information and written (electronic) handouts regarding the course of recovery and when the child/adolescent can return to school/activity/sport/work.

Level of Evidence:  

Consider the following anticipatory guidance (verbal reassurance) in order to reduce anxiety, set realistic expectations, promote recovery, and prevent re-injury: 

  • Most patients recover fully from concussion even though the recovery rate is variable and unpredictable.
  • Current symptoms are expected and common.
  • The burden and distress parents/caregivers of children/adolescents who have sustained a concussion may experience is common.
  • Children typically recover in 1-4 weeks but some children/adolescents will have symptoms at one month and beyond and need to be monitored/seek additional care.
  • Recommendation 2.3 Recommend graduated return to physical and cognitive activity
  • Domain 12: Return-to-School and Work.

Summary of online tools to consider related to lifestyle strategies and expectations:

2.3

Recommend graduated return to cognitive and physical activity to promote recovery.

While most children/adolescents fully recover, the recovery rate can be variable. Return to physical and cognitive activity should be individualized based on activity tolerance and symptom presentation.

2.3a

Recommend an initial 24-48 hour period of rest with limited physical and cognitive activity.

Level of Evidence:  Gradual return to physical activity. Gradual return to cognitive activity.

2.3b

Recommend that low to moderate level physical and cognitive activity be gradually started 24-48 hours after a concussion at a level that does not result in recurrence or exacerbation of symptoms. Activities that pose no/low risk of sustaining a concussion should be resumed even if mild residual symptoms are present or whenever acute symptoms improve sufficiently to permit activity.

Level of Evidence:  Gradual return to physical activity. Gradual return to cognitive activity.

Low to moderate level physical and cognitive activity:

2.3c

Recommend that patients avoid activities associated with a risk of contact, fall, or collisions such as high speed and/or contact activities and full-contact sport that may increase the risk of sustaining another concussion during the recovery period.

Level of Evidence:  

  • Advise/emphasize that returning to full-contact sport or high-risk activities before the child/adolescent has recovered increases the risk of delayed recovery and for sustaining another more severe concussion or more serious injury.

2.4

Provide education and guidance regarding strategies to promote recovery.

2.4a

Advise on the importance of sleep and discuss sleep hygiene.

Level of Evidence:

Advise that consistent sleep schedules and duration of sleep may contribute to general recovery from a concussion and alleviate symptoms such as mood, anxiety, pain, fatigue, and cognitive difficulties if these are present. 

Summary of tools to consider:

2.4b

Advise on maintaining social networks and interactions as tolerated beyond a brief initial period of cognitive and physical rest (24-48 hours after injury).

Level of Evidence:  

Beyond a brief initial period of cognitive and physical rest, 24-48 hours after injury, children/adolescents should participate in rewarding social activities, modified as needed, while staying below their symptom-exacerbation thresholds and avoiding risk for re-injury. There is evidence that reducing the risk of social isolation and mental health issues may promote recovery.

  • Identify these activities and suggest modifications as appropriate.
  • Educate on the principle that participation in rewarding social activities in the presence of residual or prolonged symptoms may have to be limited so that they do not result in a recurrence or exacerbation of symptoms.

2.4c

Advise on the use of computers, phones, and other devices with screens. Beyond an initial period of cognitive and physical rest (24-48 hours after injury), use of devices with screens may be gradually resumed at a level that does not result in recurrence or exacerbation of symptoms.

Level of Evidence:

Advise that computers, phone, and other devices with screens may exacerbate symptoms, especially in the first days after injury. The use of these devices can be increased according to symptom tolerance as the child/adolescent recovers. For sleep hygiene purposes, these devices should not be used in the hour prior to bedtime.

2.4d

Advise on avoiding alcohol and other recreational drugs after a concussion.

Level of Evidence:

Alcohol and recreational drugs may have a negative effect on concussion recovery. Avoiding alcohol or drugs prevents a child/adolescent from self-medicating and resorting to drugs to relieve symptoms. Impaired judgment after a concussion could lead to risky behaviour that causes further harm or may delay the identification of complications.

2.4e

Advise to avoid driving during the first 24-48 hours after a concussion. Advise patients to begin driving when they are feeling improved, can concentrate sufficiently to feel safe behind the wheel, and when the act of driving does not provoke significant concussion symptoms.

Level of Evidence:

Provide verbal information related to when an adolescent should return to driving during recovery from a concussion. Driving is a complex coordinated process that requires vision, balance, reaction time, judgment, cognition, and attention. Concussion may have affected some or all of these skills. Driving impairments have been shown to exist even in asymptomatic patients 48 hours after a concussion. Avoiding driving for at least 24-48 hours after a concussion may potentially prevent motor vehicle accidents and, therefore, injury to the adolescent or to others.

2.5

Over-the-counter medications such as acetaminophen and ibuprofen may be recommended to treat acute headache. Advise on limiting the use of these medications to less than 15 days a month and avoiding “around-the-clock” dosing to prevent overuse or rebound headaches (i.e., advise that children/adolescents avoid using over the counter medications at regular scheduled times throughout the day).

Level of Evidence:  

2.6

At present, there is limited evidence to support the administration of intravenous medication to treat acute headaches in pediatric concussion patients in the Emergency Department setting.

Level of Evidence:

2.7

After assessment, nearly all children/adolescents with concussion may be safely discharged from clinics and Emergency Departments for observation at home.

Level of Evidence:  

The decision to observe in the hospital will depend on clinical judgment. Indicators for longer in-hospital observation (or to return to emergency for re-assessment) may include:

  • Worsening symptoms (headache, confusion, irritability).
  • Decreased level of consciousness.
  • Prolonged clinical symptoms (persistent/prolonged vomiting, severe headache, etc.).
  • Bleeding disorders.
  • Multi-system injuries. 
  • Co-morbid symptoms. 

Other discharge considerations:

  • Observe the child/adolescent for a period of time to verify that they do not develop “red flag” symptoms prior to discharge. Use clinical judgment.
  • Verify that the child/adolescent has a normal mental status (alertness/behaviour/cognition) and their symptoms are improving prior to discharge. 
  • Verify that an assessment of clinical risk factors indicating the need for a CT scan was performed or a normal result was obtained if a CT scan was performed prior to discharge.
  • See Recommendation 2.1d for more information on when to consider diagnostic brain or cervical spine imaging.

2.8

Recommend a medical follow-up visit in 1-2 weeks to re-assess and monitor clinical status. Recommend an immediate medical follow-up in the presence of any deterioration.

Level of Evidence:

Those with a confirmed diagnosis of concussion may be managed by a healthcare professional who within their formally designated scope of practice has the capacity to manage ongoing concussion-related symptoms.

2.9

Consider referral to an interdisciplinary concussion team in the presence of modifiers that may delay recovery.

Level of Evidence:

See Recommendation 2.1b: Note any modifiers that may delay recovery and use a clinical risk score to predict risk of prolonged symptoms.

2.10

Provide post-concussion information and a written medical assessment to the child/adolescent and the parent/caregiver prior to sending the child/adolescent home. 

Level of Evidence:  

Write the discharge note/written medical assessment with the following information:

Verbal and written (or electronic) guidance should include:

Examples of patient information handouts to consider:

Tools and Resources

Living Guideline Tools

Online Tools and Patient Handouts to Consider:

References

Boutis, K., Weerdenburg, K., Koo, E., Schneeweiss, S., & Zemek, R. (2015). The diagnosis of concussion in a pediatric emergency department. Journal of Pediatrics, 166(5), 1214–1220.e1. https://doi.org/10.1016/j.jpeds.2015.02.013

Bramley, H., McFarland, C., Lewis, M. M., Shaffer, M. L., Cilley, R., Engbrecht, B., … Dias, M. S. (2014). Short-term outcomes of sport- and recreation-related concussion in patients admitted to a pediatric trauma service. Clinical Pediatrics, 53(8), 784–790. https://doi.org/10.1177/0009922814533403

Brooks, T. M., Smith, M. M., Silvis, R. M., Lerer, T., Mulvey, C. H., Maitland, R., … Smith, S. R. (2017). Symptom-Guided Emergency Department Discharge Instructions for Children with Concussion. Pediatric Emergency Care, 33(8), 553–563. https://doi.org/10.1097/PEC.0000000000000797

Davis, G. A., Purcell, L., Schneider, K. J., Yeates, K. O., Gioia, G. A., Anderson, V., … Kutcher, J. S. (2017). The Child Sport Concussion Assessment Tool 5th Edition (Child SCAT5): Background and rationale. British Journal of Sports Medicine, 51(11), 859–861. https://doi.org/10.1136/bjsports-2017-097492

Elbin, R. J., Sufrinko, A., Schatz, P., French, J., Henry, L., Burkhart, S., … Kontos, A. P. (2016). Removal From Play After Concussion and Recovery Time. Pediatrics, 138(3), e20160910–e20160910. https://doi.org/10.1542/peds.2016-0910

Glaviano, N. R., Benson, S., Goodkin, H. P., Broshek, D. K., & Saliba, S. (2015). Baseline SCAT2 Assessment of Healthy Youth Student-Athletes: Preliminary Evidence for the Use of the Child-SCAT3 in Children Younger Than 13 Years. Clinical Journal of Sport Medicine, 25(4), 373–379. https://doi.org/10.1097/JSM.0000000000000154

Grool, A. M., Aglipay, M., Momoli, F., Meehan, W. P., Freedman, S. B., Yeates, K. O., … Zemek, R. (2016). Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents. Jama, 316(23), 2504. https://doi.org/10.1001/jama.2016.17396

Mckinlay, A., Ligteringen, V., & Than, M. (2014). A comparison of concussive symptoms reported by parents for preschool versus school-aged children. Journal of Head Trauma Rehabilitation, 29(3), 233–238. https://doi.org/10.1097/HTR.0b013e3182a2dd7f

Miller, J. H., Gill, C., Kuhn, E. N., Rocque, B. G., Menendez, J. Y., O’Neill, J. A., … Johnston, J. M. (2016). Predictors of delayed recovery following pediatric sports-related concussion: a case-control study. Journal of Neurosurgery: Pediatrics, 17(4), 491–496. https://doi.org/10.3171/2015.8.PEDS14332

Taubman, B., Rosen, F., McHugh, J., Grady, M. F., & Elci, O. U. (2016). The Timing of Cognitive and Physical Rest and Recovery in Concussion. Journal of Child Neurology, 31(14), 1555–1560. https://doi.org/10.1177/0883073816664835

Terwilliger, V. K., Pratson, L., Vaughan, C. G., & Gioia, G. A. (2016). Additional Post-Concussion Impact Exposure May Affect Recovery in Adolescent Athletes. Journal of Neurotrauma, 33(8), 761–765. https://doi.org/10.1089/neu.2015.4082

Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern, C., … Moore, J. (2016). Clinical risk score for persistent postconcussion symptomsamong children with acute concussion in the ED. JAMA – Journal of the American Medical Association, 315(10), 1014–1025. https://doi.org/10.1001/jama.2016.1203

Additional references that helped to inform the domain recommendations:

McCrory, P., Meeuwisse, W., Dvořák, J., Aubry, M., Bailes, J., … Vos, P.E. (2017) Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine. 51(11),838-847. https://doi.org/10.1136/bjsports-2017-097699

icon imgDomain 3: Medical Follow-up and Management of Prolonged Symptoms

Introduction:

A medical follow-up is recommended if a child/adolescent is experiencing post-concussion symptoms, has not completed the return-to-school or return-to-activity/sport stages, or experiences any deterioration. Post-concussion symptoms and return-to-school/ activity/sport/work status should be reassessed. A medical assessment including clinical history, comprehensive physical examination, and consideration for diagnostic tests or imaging should be considered in patients with red flag symptoms or worrisome clinical findings. Those with a confirmed diagnosis of concussion may be managed by a healthcare professional that, within their formally designated scope of practice, has the capacity to manage ongoing concussion-related symptoms.

Patients who are experiencing clinical improvement in their post-concussion symptoms should continue to be provided with education, reassurance, and guidance on advancing through their return-to-school/activity/sport strategies. At follow-up visits, patients should be provided with an updated medical clearance letter indicating if they are medically cleared to participate in full-contact sport or high-risk activities.

If post-concussion symptoms have not resolved by one-month, or if the child/adolescent’s condition/symptoms worsen, consider referral to specialized care with an interdisciplinary concussion team and ensure that the child/adolescent is well supported at school and at home. Additionally, early identification of patients with modifiers that may delay recovery allows for early targeted supportive care, close monitoring for prolonged symptoms, and consideration for early referral (before 4-weeks following acute injury) to an interdisciplinary concussion team.

Tool 1.3: Manage Acute and Prolonged Concussion Symptoms Algorithm

Recommendations

LEVEL OF EVIDENCE A = Consistent, good-quality, patient-oriented evidence (example: at least one large randomized control trial, meta-analysis or systematic review with homogeneity, or large, high- quality, multi-centre cohort study)B = Inconsistent or limited-quality patient-oriented evidence (example: smaller cohort studies, case studies or control trials with limitations)C = Consensus, usual practice, opinion or weaker-level evidence

3.1

Perform a repeat medical assessment on all patients presenting with post-concussion symptoms 1-2 weeks following acute injury.

Tool 1.3: Manage Acute and Prolonged Symptoms Algorithm

Include a focused clinical history, focused physical examination, and consideration for the need for diagnostic tests including imaging. 

3.1a

Take a focused clinical history based on symptoms described.

Level of Evidence:   

 

Consider signs and symptoms in context with the child/adolescent’s normal performance, especially for those with pre-existing conditions (e.g., learning and communication deficits, ADHD, and/or physical disabilities) to identify the underlying causes of the prolonged symptoms or concerns and develop a management strategy.

3.1b

Examine the child/adolescent and perform a focused physical examination.

Level of Evidence:  

 

  • Vital signs (Resting heart rate and blood pressure).
  • A complete neurological examination (cranial nerve, motor, sensory, reflex, cerebellar, gait, balance testing) (Tool 2.1: Physical Examination).
  • A cervical spine examination (palpation, range of motion, provocative cervical spine tests) (Tool 2.1: Physical Examination.
  • Review mental health. Perform a post-concussive assessment and a cognitive screen, reassessing for existing and new mental health symptoms such as anxiety and mood. 
  • Screen the child/adolescent for medication/substances that may mask or modify the symptoms.
  • Consider a broad differential diagnosis for children/adolescents with prolonged symptoms.
  • Monitor the return-to-activity/sport and return-to-school status.

Further examination of the child/adolescent should be based on symptoms:

3.1c

Recommendation 2.1d:  Consider diagnostic brain or cervical spine MRI imaging for those with focal or worrisome symptoms. 

Level of Evidence:   MRI

Urgent conventional MRI should be considered in concussion patients who present with focal or worrisome symptoms (e.g., deteriorating vision, focal weakness or numbness, altered awareness, prominent behavioural changes, or worsening headaches that are not responding to treatment) and in whom a structural brain injury or abnormality is suspected. 

3.2

Provide patients with general education and guidance that outlines mental health considerations, non-pharmacological strategies to minimize symptoms including sleep hygiene, activity modifications, limiting triggers, information on screen time, the importance of social interaction, and how to work with the school team to facilitate school success. 

Level of Evidence:  

 

3.3

Encourage patients with post-concussion symptoms to engage in cognitive activity and low-risk physical activity as soon as tolerated while staying below their symptom-exacerbation thresholds. Activities that pose no/low risk of sustaining a concussion (no risk of contact, collision, or falling) should be resumed even if mild residual symptoms are present or whenever acute symptoms improve sufficiently to permit activity. 

Level of Evidence:   Gradual Return to physical activity. Gradual return to cognitive activity.

See Recommendation 2.3.

See Tool 2.6: Post-Concussion Information Sheet for examples of low-risk activities. 

3.4

Refer to specialized care with an interdisciplinary concussion team if post-concussion symptoms do not gradually resolve by 4 weeks. 

Level of Evidence:   

See Tool 1.3 Manage Acute and Prolonged Symptoms Algorithm.

Assessment by an interdisciplinary concussion team can assist in identifying the type of management that is required, along with the medical and health professions on the interdisciplinary concussion team or external to this team who can provide the required management. Not all children/adolescents will require care from all members of the interdisciplinary concussion team and care should be targeted based on identified symptoms and patient needs.

3.5

Consider early referral (prior to 4-week post-injury) to an interdisciplinary concussion team in the presence of modifiers that may delay recovery.

Level of Evidence:

See Recommendation 2.1b: Note any modifiers that may delay recovery and use a clinical risk score to predict risk of prolonged symptoms.

3.6

Consider initiating treatment for specific symptoms or concerns while waiting for a referral to an interdisciplinary concussion team or sub-specialist. 

Level of Evidence:   

 

3.7

Recommend regular medical follow-up if a child/adolescent is still experiencing post-concussion symptoms or has not completed the return-to-school or return-to-sport/activity stages. Recommend an immediate medical follow-up in the presence of any deterioration.

Level of Evidence:  

References

Araujo, G. C., Antonini, T. N., Monahan, K., Gelfius, C., Klamar, K., Potts, M., … Bodin, D. (2014). The relationship between suboptimal effort and post-concussion symptoms in children and adolescents with mild traumatic brain injury. Clinical Neuropsychologist, 28(5), 786–801. https://doi.org/10.1080/13854046.2014.896415

Babcock, L., Kurowski, B. G., Zhang, N., Dexheimer, J. W., Dyas, J., & Wade, S. L. (2017). Adolescents with Mild Traumatic Brain Injury Get SMART: An Analysis of a Novel Web-Based Intervention. Telemedicine and E-Health, 23(7), 600–607. https://doi.org/10.1089/tmj.2016.0215

Babikian, T., McArthur, D., & Asarnow, R. F. (2013). Predictors of 1-month and 1-year neurocognitive functioning from the UCLA longitudinal mild, uncomplicated, pediatric traumatic brain injury study. Journal of the International Neuropsychological Society, 19(2), 145–154. https://doi.org/10.1017/S135561771200104X

Biederman, J., Feinberg, L., Chan, J., Adeyemo, B. O., Woodworth, K. Y., Panis, W., … Faraone, S. V. (2015). Mild traumatic brain injury and attention-deficit hyperactivity disorder in young student athletes. Journal of Nervous and Mental Disease, 203(11), 813–819. https://doi.org/10.1097/NMD.0000000000000375

Bonfield, C. M., Lam, S., Lin, Y., & Greene, S. (2013). The impact of attention deficit hyperactivity disorder on recovery from mild traumatic brain injury. Journal of Neurosurgery: Pediatrics, 12(2), 97–102. https://doi.org/10.3171/2013.5.PEDS12424

Brooks, T. M., Smith, M. M., Silvis, R. M., Lerer, T., Mulvey, C. H., Maitland, R., … Smith, S. R. (2017). Symptom-Guided Emergency Department Discharge Instructions for Children with Concussion. Pediatric Emergency Care, 33(8), 553–563. https://doi.org/10.1097/PEC.0000000000000797

Chrisman, S. P. D., Whitlock, K. B., Somers, E., Burton, M. S., Herring, S. A., Rowhani-Rahbar, A., & Rivara, F. P. (2017). Pilot study of the Sub-Symptom Threshold Exercise Program (SSTEP) for persistent concussion symptoms in youth. NeuroRehabilitation, 40(4), 493–499. https://doi.org/10.3233/NRE-161436

Collings, L. J., Cook, N. E., Porter, S., Kusch, C., Sun, J., Virji-Babul, N., … Panenka, W. J. (2017). Attention-deficit/hyperactivity disorder is associated with baseline child sport concussion assessment tool third edition scores in child hockey players. Brain Injury, 31(11), 1479–1485. https://doi.org/10.1080/02699052.2017.1377351

Cook, N. E., Huang, D. S., Silverberg, N. D., Brooks, B. L., Maxwell, B., Zafonte, R., … Iverson, G. L. (2017). Baseline cognitive test performance and concussion-like symptoms among adolescent athletes with ADHD: examining differences based on medication use. Clinical Neuropsychologist, 31(8), 1341–1352. https://doi.org/10.1080/13854046.2017.1317031

Cordingley, D., Girardin, R., Reimer, K., Ritchie, L., Leiter, J., Russell, K., & Ellis, M. J. (2016). Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. Journal of Neurosurgery: Pediatrics, 18(6), 693–702. https://doi.org/10.3171/2016.5.PEDS16139

Dobney, D. M., Grilli, L., Kocilowicz, H., Beaulieu, C., Straub, M., Friedman, D., & Gagnon, I. (2017). Evaluation of an active rehabilitation program for concussion management in children and adolescents. Brain Injury, 31(13–14), 1753–1759. https://doi.org/10.1080/02699052.2017.1346294

Donders, J., & DeWit, C. (2017). Parental ratings of daily behavior and child cognitive test performance after pediatric mild traumatic brain injury. Child Neuropsychology, 23(5), 554–570. https://doi.org/10.1080/09297049.2016.1161015

Elbin, R. J., Kontos, A. P., Kegel, N., Johnson, E., Burkhart, S., & Schatz, P. (2013). Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: Evidence for separate norms. Archives of Clinical Neuropsychology, 28(5), 476–484. https://doi.org/10.1093/arclin/act024

Gardner, R. M., Yengo-Kahn, A., Bonfield, C. M., & Solomon, G. S. (2017). Comparison of baseline and post-concussion ImPACT test scores in young athletes with stimulant-treated and untreated ADHD. Physician and Sportsmedicine, 45(1), 1–10. https://doi.org/10.1080/00913847.2017.1248221

Iverson, G. L., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2016). Concussion History in Adolescent Athletes with Attention-Deficit Hyperactivity Disorder. Journal of Neurotrauma, 33(23), 2077–2080. https://doi.org/10.1089/neu.2014.3424

Jimenez, N., Quistberg, A., Vavilala, M. S., Jaffe, K. M., & Rivara, F. P. (2017). Utilization of Mental Health Services After Mild Pediatric Traumatic Brain Injury. Pediatrics, 139(3), e20162462. https://doi.org/10.1542/peds.2016-2462

Kirkwood, M. W., Peterson, R. L., Connery, A. K., Baker, D. A., & Forster, J. (2016). A Pilot Study Investigating Neuropsychological Consultation as an Intervention for Persistent Postconcussive Symptoms in a Pediatric Sample. Journal of Pediatrics, 169, 244–249e1. https://doi.org/10.1016/j.jpeds.2015.10.014

Kostyun, R. O., Milewski, M. D., & Hafeez, I. (2014). Sleep Disturbance and Neurocognitive Function During the Recovery From a Sport-Related Concussion in Adolescents. The American Journal of Sports Medicine, 1–8. https://doi.org/10.1177/0363546514560727

Lin, K., & Tung, C. (2016). Acupuncture for Recovery from Pediatric Sport-Related Concussion. Medical Acupuncture, 28(4), 217–222. https://doi.org/10.1089/acu.2016.1181

Mautner, K., Sussman, W. I., Axtman, M., Al-Farsi, Y., & Al-Adawi, S. (2015). Relationship of Attention Deficit Hyperactivity Disorder and Postconcussion Recovery in Youth Athletes. Clinical Journal of Sport Medicine, 25(4), 355–360. https://doi.org/10.1097/JSM.0000000000000151

McCarty, C. A., Zatzick, D., Stein, E., Wang, J., Hilt, R., & Rivara, F. P. (2016). Collaborative Care for Adolescents With Persistent Postconcussive Symptoms: A Randomized Trial. Pediatrics, 138(4), e20160459–e20160459. https://doi.org/10.1542/peds.2016-0459

McNally, K. A., Patrick, K. E., LaFleur, J. E., Dykstra, J. B., Monahan, K., & Hoskinson, K. R. (2018). Brief cognitive behavioral intervention for children and adolescents with persistent post-concussive symptoms: A pilot study. Child Neuropsychology, 24(3), 396–412. https://doi.org/10.1080/09297049.2017.1280143

Miller, J. H., Gill, C., Kuhn, E. N., Rocque, B. G., Menendez, J. Y., O’Neill, J. A., … Johnston, J. M. (2016). Predictors of delayed recovery following pediatric sports-related concussion: a case-control study. Journal of Neurosurgery: Pediatrics, 17(4), 491–496. https://doi.org/10.3171/2015.8.PEDS14332

Moor, H. M., Eisenhauer, R. C., Killian, K. D., Proudfoot, N., Henriques, A. A., Congeni, J. A., & Reneker, J. C. (2015). The relationship between adherence behaviors and recovery time in adolescents after a sports-related concussion: an observational study. Int J Sports Phys Ther, 10(2), 225–233.

Nowacki, R., van Eldik, N., Eikens, M., Roijen, R., Haga, N., Schott, D., … Wennekes, M. (2017). Evaluation of a follow-up program for mild traumatic brain injury in schoolchildren. European Journal of Paediatric Neurology, 21(2), 382–387. https://doi.org/10.1016/j.ejpn.2016.10.009

Reddy, C. C., Collins, M., Lovell, M., & Kontos, A. P. (2013). Efficacy of amantadine treatment on symptoms and neurocognitive performance among adolescents following sports-related concussion. Journal of Head Trauma Rehabilitation, 28(4), 260–265. https://doi.org/10.1097/HTR.0b013e318257fbc6

Reed, N., Taha, T., Monette, G., & Keightley, M. (2016). A Preliminary Exploration of Concussion and Strength Performance in Youth Ice Hockey Players. International Journal of Sports Medicine, 37(9), 708–713. https://doi.org/10.1055/s-0042-104199

Root, J. M., Zuckerbraun, N. S., Wang, L., Winger, D. G., Brent, D., Kontos, A., & Hickey, R. W. (2016). History of Somatization Is Associated with Prolonged Recovery from Concussion. Journal of Pediatrics, 174, 39–44.e1. https://doi.org/10.1016/j.jpeds.2016.03.020

Sady, M. D., Vaughan, C. G., & Gioia, G. A. (2014). Psychometric characteristics of the postconcussion symptom inventory in children and adolescents. Archives of Clinical Neuropsychology, 29(4), 348–363. https://doi.org/10.1093/arclin/acu014

Salinas, C. M., Dean, P., LoGalbo, A., Dougherty, M., Field, M., & Webbe, F. M. (2016). Attention-Deficit Hyperactivity Disorder Status and Baseline Neurocognitive Performance in High School Athletes. Applied Neuropsychology: Child, 5(4), 264–272. https://doi.org/10.1080/21622965.2015.1052814

Schneider, K. J., Meeuwisse, W. H., Nettel-Aguirre, A., Barlow, K., Boyd, L., Kang, J., & Emery, C. A. (2014). Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. British Journal of Sports Medicine, 48(17), 1294–1298. https://doi.org/10.1136/bjsports-2013-093267

Zemek, R., Barrowman, N., Freedman, S. B., Gravel, J., Gagnon, I., McGahern, C., … Moore, J. (2016). Clinical risk score for persistent postconcussion symptomsamong children with acute concussion in the ED. JAMA – Journal of the American Medical Association, 315(10), 1014–1025. https://doi.org/10.1001/jama.2016.1203

Additional references that helped to inform the domain recommendations:

McCrory, P., Meeuwisse, W., Dvořák, J., Aubry, M., Bailes, J., … Vos, P.E. (2017) Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine. 51(11),838-847. https://doi.org/10.1136/bjsports-2017-097699

Schneider, K.J., Leddy, J.J., Guskiewicz, K.M., Seifert, T., McCrea, M., … Makdissi, M. (2017) Rest and treatment/rehabilitation following sport-related concussion: A systematic review. British Journal of Sports Medicine. 51(12),930-934. https://doi.org/10.1136/bjsports-2016-097475

icon imgDomain 4: Medical Clearance for Full Contact Sport or High-Risk Activity

Introduction:

Medical clearance to return to full-contact sports or high-risk activities should be made on an individual basis using clinical judgment based on the findings of the medical follow-up. Presently there is no objective test to confirm physiological recovery following concussion. The child/adolescent should have returned to all school activities, including writing exams without accommodations related to their concussion/post-concussion symptoms, before medical clearance is given for returning to full-contact sports or high-risk activities.

Recommendations

LEVEL OF EVIDENCE A = Consistent, good-quality, patient-oriented evidence (example: at least one large randomized control trial, meta-analysis or systematic review with homogeneity, or large, high- quality, multi-centre cohort study)B = Inconsistent or limited-quality patient-oriented evidence (example: smaller cohort studies, case studies or control trials with limitations)C = Consensus, usual practice, opinion or weaker-level evidence

4.1

Consider patients for medical clearance to return to full-contact activities and sport/game play if clinical criteria have been met.

Level of Evidence:  

The following clinical criteria should be considered or met before recommending that a child/adolescent returns to full-contact activities and sport/game play: 

  • Child/adolescent has been cleared to return to all school activities including writing exams without accommodations related to their concussion/post-concussion symptoms (e.g., child/adolescent may have pre-existing accommodations or new accommodations related to something other than their concussion).
  • Normal neurological and cervical spine examination.
  • Asymptomatic at rest (or back to the pre-injury state in patients with pre-existing conditions such as baseline headaches or mental health conditions). 
  • Tolerating physical activities and non-contact activities without any symptoms.
  • No longer taking any drugs or substances atypical to their pre-injury functioning that could mask symptom presentation.

For children/adolescents with complex medical histories (e.g., repeated concussion, baseline concussion-like symptoms), see Recommendation 5.1 for information regarding returning to full-contact sports or high-risk activities, or retirement from full-contact sports or high-risk activities.

4.2

Provide patients with a letter indicating medical clearance to return to all activities when medically cleared. 

Level of Evidence:  

Link: Canadian Guideline on Concussion in Sport Medical Assessment Letter (Parachute Canada).

Link: Quebec Association of Sport and Exercise Medicine physicians: Medical clearance letter. English; French 

4.3

Advise medically cleared patients to seek immediate medical attention if he or she develops new concussion-like symptoms or sustains a new suspected concussion. 

Level of Evidence:   

Tool 1.2: Concussion Recognition Tool 5. To help identify concussion in children, adolescents, and adults.

Tools and Resources

Tools to Consider:

References

Araujo, G. C., Antonini, T. N., Monahan, K., Gelfius, C., Klamar, K., Potts, M., … Bodin, D. (2014). The relationship between suboptimal effort and post-concussion symptoms in children and adolescents with mild traumatic brain injury. Clinical Neuropsychologist, 28(5), 786–801. https://doi.org/10.1080/13854046.2014.896415

Babcock, L., Kurowski, B. G., Zhang, N., Dexheimer, J. W., Dyas, J., & Wade, S. L. (2017). Adolescents with Mild Traumatic Brain Injury Get SMART: An Analysis of a Novel Web-Based Intervention. Telemedicine and E-Health, 23(7), 600–607. https://doi.org/10.1089/tmj.2016.0215

Babikian, T., McArthur, D., & Asarnow, R. F. (2013). Predictors of 1-month and 1-year neurocognitive functioning from the UCLA longitudinal mild, uncomplicated, pediatric traumatic brain injury study. Journal of the International Neuropsychological Society, 19(2), 145–154. https://doi.org/10.1017/S135561771200104X

Bonfield, C. M., Lam, S., Lin, Y., & Greene, S. (2013). The impact of attention deficit hyperactivity disorder on recovery from mild traumatic brain injury. Journal of Neurosurgery: Pediatrics, 12(2), 97–102. https://doi.org/10.3171/2013.5.PEDS12424

Brooks, B. L., Mannix, R., Maxwell, B., Zafonte, R., Berkner, P. D., & Iverson, G. L. (2016). Multiple Past Concussions in High School Football Players. American Journal of Sports Medicine, 44(12), 3243–3251. https://doi.org/10.1177/0363546516655095

Brooks, B. L., McKay, C. D., Mrazik, M., Barlow, K. M., Meeuwisse, W. H., & Emery, C. A. (2013). Subjective, but not Objective, Lingering Effects of Multiple Past Concussions in Adolescents. Journal of Neurotrauma, 30(17), 1469–1475. https://doi.org/10.1089/neu.2012.2720

Brooks, T. M., Smith, M. M., Silvis, R. M., Lerer, T., Mulvey, C. H., Maitland, R., … Smith, S. R. (2017). Symptom-Guided Emergency Department Discharge Instructions for Children with Concussion. Pediatric Emergency Care, 33(8), 553–563. https://doi.org/10.1097/PEC.0000000000000797

Collings, L. J., Cook, N. E., Porter, S., Kusch, C., Sun, J., Virji-Babul, N., … Panenka, W. J. (2017). Attention-deficit/hyperactivity disorder is associated with baseline child sport concussion assessment tool third edition scores in child hockey players. Brain Injury, 31(11), 1479–1485. https://doi.org/10.1080/02699052.2017.1377351

Cook, N. E., Huang, D. S., Silverberg, N. D., Brooks, B. L., Maxwell, B., Zafonte, R., … Iverson, G. L. (2017). Baseline cognitive test performance and concussion-like symptoms among adolescent athletes with ADHD: examining differences based on medication use. Clinical Neuropsychologist, 31(8), 1341–1352. https://doi.org/10.1080/13854046.2017.1317031

Cordingley, D., Girardin, R., Reimer, K., Ritchie, L., Leiter, J., Russell, K., & Ellis, M. J. (2016). Graded aerobic treadmill testing in pediatric sports-related concussion: safety, clinical use, and patient outcomes. Journal of Neurosurgery: Pediatrics, 18(6), 693–702. https://doi.org/10.3171/2016.5.PEDS16139

Donders, J., & DeWit, C. (2017). Parental ratings of daily behavior and child cognitive test performance after pediatric mild traumatic brain injury. Child Neuropsychology, 23(5), 554–570. https://doi.org/10.1080/09297049.2016.1161015

Elbin, R. J., Kontos, A. P., Kegel, N., Johnson, E., Burkhart, S., & Schatz, P. (2013). Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: Evidence for separate norms. Archives of Clinical Neuropsychology, 28(5), 476–484. https://doi.org/10.1093/arclin/act024

Gardner, R. M., Yengo-Kahn, A., Bonfield, C. M., & Solomon, G. S. (2017). Comparison of baseline and post-concussion ImPACT test scores in young athletes with stimulant-treated and untreated ADHD. Physician and Sportsmedicine, 45(1), 1–10. https://doi.org/10.1080/00913847.2017.1248221

Iverson, G. L., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2016). Concussion History in Adolescent Athletes with Attention-Deficit Hyperactivity Disorder. Journal of Neurotrauma, 33(23), 2077–2080. https://doi.org/10.1089/neu.2014.3424

Mannix, R., Iverson, G. L., Maxwell, B., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2014). Multiple prior concussions are associated with symptoms in high school athletes. Annals of Clinical and Translational Neurology, 1(6), 433–438. https://doi.org/10.1002/acn3.70

McKay, C. D., Schneider, K. J., Brooks, B. L., Mrazik, M., & Emery, C. A. (2014). Baseline Evaluation in Youth Ice Hockey Players: Comparing Methods for Documenting Prior Concussions and Attention or Learning Disorders. Journal of Orthopaedic & Sports Physical Therapy, 44(5), 329–335. https://doi.org/10.2519/jospt.2014.5053

Nowacki, R., van Eldik, N., Eikens, M., Roijen, R., Haga, N., Schott, D., … Wennekes, M. (2017). Evaluation of a follow-up program for mild traumatic brain injury in schoolchildren. European Journal of Paediatric Neurology, 21(2), 382–387. https://doi.org/10.1016/j.ejpn.2016.10.009

Reed, N., Taha, T., Monette, G., & Keightley, M. (2016). A Preliminary Exploration of Concussion and Strength Performance in Youth Ice Hockey Players. International Journal of Sports Medicine, 37(9), 708–713. https://doi.org/10.1055/s-0042-104199

Root, J. M., Zuckerbraun, N. S., Wang, L., Winger, D. G., Brent, D., Kontos, A., & Hickey, R. W. (2016). History of Somatization Is Associated with Prolonged Recovery from Concussion. Journal of Pediatrics, 174, 39–44.e1. https://doi.org/10.1016/j.jpeds.2016.03.020

Sady, M. D., Vaughan, C. G., & Gioia, G. A. (2014). Psychometric characteristics of the postconcussion symptom inventory in children and adolescents. Archives of Clinical Neuropsychology, 29(4), 348–363. https://doi.org/10.1093/arclin/acu014

Salinas, C. M., Dean, P., LoGalbo, A., Dougherty, M., Field, M., & Webbe, F. M. (2016). Attention-Deficit Hyperactivity Disorder Status and Baseline Neurocognitive Performance in High School Athletes. Applied Neuropsychology: Child, 5(4), 264–272. https://doi.org/10.1080/21622965.2015.1052814

Additional references that helped to inform the domain recommendations:

McCrory, P., Meeuwisse, W., Dvořák, J., Aubry, M., Bailes, J., … Vos, P.E. (2017) Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. British Journal of Sports Medicine. 51(11),838-847. https://doi.org/10.1136/bjsports-2017-097699

icon imgDomain 5: Sport Concussion Considerations

Introduction:

Return to full-contact sport or high-risk activity decisions may be complicated for children/adolescents who have experienced multiple concussions or who have baseline conditions that are associated with concussion-like symptoms. Numerous factors including concussion history, co-morbidities, contraindications, symptom presentation, injury threshold, and sequelae should be considered when making return to sport decisions for children/adolescents who have complex medical histories. The current evidence does not support an added benefit of baseline testing. Mandatory pre-season baseline testing is not recommended.

Link: Parachute Statement on Baseline Testing (Parachute Canada).

Recommendations

LEVEL OF EVIDENCE A = Consistent, good-quality, patient-oriented evidence (example: at least one large randomized control trial, meta-analysis or systematic review with homogeneity, or large, high- quality, multi-centre cohort study)B = Inconsistent or limited-quality patient-oriented evidence (example: smaller cohort studies, case studies or control trials with limitations)C = Consensus, usual practice, opinion or weaker-level evidence

5.1

Refer a child/adolescent with multiple concussions or baseline conditions associated with concussion-like symptoms to an interdisciplinary concussion team to help with return to full-contact sports or high-risk activities or retirement decisions from full-contact sports or high-risk activities.

Level of Evidence:  

Return to full-contact sport or high-risk activity decisions can be complicated for children/adolescents with more complex medical histories. The following factors should be taken into consideration in the discussion and decisions made about return-to-sport or retirement: 

  • Concussion history.
  • Co-morbidities (e.g., learning and communication deficits, ADHD, physical disabilities, psychiatric disorders).
  • Absolute contraindications for return-to-sport and high-risk activities.
  • Early recurrence or greater frequency of symptoms.
  • Lower injury threshold.
  • Increasing recovery time.
  • Potential short- and long-term sequelae.

Some patients may benefit from neuropsychological assessment to determine resolution of cognitive problems. If a post-injury cognitive or neuropsychological assessment is deemed clinically necessary, it is recommended that this assessment be interpreted by a pediatric neuropsychologist.

5.2

Baseline testing on children/adolescents using concussion assessment tools or tests (or any combination of tests/tools) is not recommended or required for concussion diagnosis or management following an injury. 

Level of Evidence:   

See the Parachute Statement on Baseline Testing for more information (Parachute Canada). 

“Baseline testing refers to the practice of having an athlete complete certain concussion assessment tools/tests prior to sports participation to provide baseline measurements that can be compared to post-injury values in the event of a suspected concussion. Current evidence does not support a significant added benefit of baseline testing athletes. This includes the Child SCAT5 and the SCAT5 tools, as well as neuropsychological and neurocognitive tests, both computerized or not.” (Parachute Statement on Baseline Testing)

See Recommendation 5.3: Special considerations regarding baseline testing.

5.3

Special considerations regarding baseline testing.

Level of Evidence:   

Please consult the Parachute Statement on Baseline Testing for more information (Parachute Canada).

“There may be unique athlete populations and sports environments where baseline testing may be considered. These situations should be considered the exception and not the rule.” 

  • “Clinical neuropsychologists may consider baseline cognitive or neuropsychological testing in select youth athletes (greater than 12 years old) who have pre-existing conditions, such as a history of previous concussion, ADHD, or learning disorders, that may impact the interpretation of post-injury test results.”
  • “Certain teams and sporting federations have well-established physician-supervised concussion protocols with dedicated experienced healthcare professionals working directly and continuously with youth athletes (i.e., that are present at training and competition events). In these sport environments, baseline testing may be considered as an optional assessment within the comprehensive concussion protocol as long as the medical teams caring for these athletes include experienced healthcare professionals who have competency-based training and clinical experience to allow them to administer and interpret these tests.” 

(Reproduced with permission from Parachute Canada: Parachute Statement on Baseline Testing).

 

Tools and Resources
References

Abeare, C. A., Messa, I., Zuccato, B. G., Merker, B., & Erdodi, L. (2018). Prevalence of invalid performance on baseline testing for sport-related concussion by age and validity indicator. JAMA Neurology, 75(6), 697–703. https://doi.org/10.1001/jamaneurol.2018.0031

Anthony, C. A., & Peterson, A. R. (2015). Utilization of a text-messaging robot to assess intraday variation in concussion symptom severity scores. Clinical Journal of Sport Medicine, 25(2), 149–152. https://doi.org/10.1097/JSM.0000000000000115

Araujo, G. C., Antonini, T. N., Monahan, K., Gelfius, C., Klamar, K., Potts, M., … Bodin, D. (2014). The relationship between suboptimal effort and post-concussion symptoms in children and adolescents with mild traumatic brain injury. Clinical Neuropsychologist, 28(5), 786–801. https://doi.org/10.1080/13854046.2014.896415

Baker, D. A., Connery, A. K., Kirk, J. W., & Kirkwood, M. W. (2014). Embedded performance validity indicators within the california verbal learning test, childrens version. Clinical Neuropsychologist, 28(1), 116–127. https://doi.org/10.1080/13854046.2013.858184

Brett, B. L., & Solomon, G. S. (2017). The influence of validity criteria on Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) test–retest reliability among high school athletes. Journal of Clinical and Experimental Neuropsychology, 39(3), 286–295. https://doi.org/10.1080/13803395.2016.1224322

Brett, B. L., Smyk, N., Solomon, G., Baughman, B. C., & Schatz, P. (2016). Long-term Stability and Reliability of Baseline Cognitive Assessments in High School Athletes Using ImPACT at 1-, 2-, and 3-year Test–Retest Intervals. Archives of Clinical Neuropsychology, (August), 904–914. https://doi.org/10.1093/arclin/acw055

Brooks, B. L., Iverson, G. L., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2016). Sex Differences and Self-Reported Attention Problems During Baseline Concussion Testing. Applied Neuropsychology: Child, 5(2), 119–126. https://doi.org/10.1080/21622965.2014.1003066

Brooks, B. L., Mannix, R., Maxwell, B., Zafonte, R., Berkner, P. D., & Iverson, G. L. (2016). Multiple Past Concussions in High School Football Players. American Journal of Sports Medicine, 44(12), 3243–3251. https://doi.org/10.1177/0363546516655095

Brooks, B. L., McKay, C. D., Mrazik, M., Barlow, K. M., Meeuwisse, W. H., & Emery, C. A. (2013). Subjective, but not Objective, Lingering Effects of Multiple Past Concussions in Adolescents. Journal of Neurotrauma, 30(17), 1469–1475. https://doi.org/10.1089/neu.2012.2720

Brooks, M. A., Snedden, T. R., Mixis, B., Hetzel, S., & McGuine, T. A. (2017). Establishing baseline normative values for the child sport concussion assessment tool. JAMA Pediatrics, 171(7), 670–677. https://doi.org/10.1001/jamapediatrics.2017.0592

Chin, E. Y., Nelson, L. D., Barr, W. B., McCrory, P., & McCrea, M. A. (2016). Reliability and validity of the sport concussion assessment tool-3 (SCAT3) in high school and collegiate athletes. American Journal of Sports Medicine, 44(9), 2276–2285. https://doi.org/10.1177/0363546516648141

Collings, L. J., Cook, N. E., Porter, S., Kusch, C., Sun, J., Virji-Babul, N., … Panenka, W. J. (2017). Attention-deficit/hyperactivity disorder is associated with baseline child sport concussion assessment tool third edition scores in child hockey players. Brain Injury, 31(11), 1479–1485. https://doi.org/10.1080/02699052.2017.1377351

Cook, N. E., Huang, D. S., Silverberg, N. D., Brooks, B. L., Maxwell, B., Zafonte, R., … Iverson, G. L. (2017). Baseline cognitive test performance and concussion-like symptoms among adolescent athletes with ADHD: examining differences based on medication use. Clinical Neuropsychologist, 31(8), 1341–1352. https://doi.org/10.1080/13854046.2017.1317031

Covassin, T., Crutcher, B., & Wallace, J. (2013). Does a 20 minute cognitive task increase concussion symptoms in concussed athletes? Brain Injury, 27(13–14), 1589–1594. https://doi.org/10.3109/02699052.2013.823656

Custer, A., Sufrinko, A., Elbin, R. J., Covassin, T., Collins, M., & Kontos, A. (2016). High baseline postconcussion symptom scores and concussion outcomes in athletes. Journal of Athletic Training, 51(2), 136–141. https://doi.org/10.4085/1062-6050-51.2.12

Davis, G. A., Purcell, L., Schneider, K. J., Yeates, K. O., Gioia, G. A., Anderson, V., … Kutcher, J. S. (2017). The Child Sport Concussion Assessment Tool 5th Edition (Child SCAT5): Background and rationale. British Journal of Sports Medicine, 51(11), 859–861. https://doi.org/10.1136/bjsports-2017-097492

Elbin, R. J., Kontos, A. P., Kegel, N., Johnson, E., Burkhart, S., & Schatz, P. (2013). Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: Evidence for separate norms. Archives of Clinical Neuropsychology, 28(5), 476–484. https://doi.org/10.1093/arclin/act024

Gardner, R. M., Yengo-Kahn, A., Bonfield, C. M., & Solomon, G. S. (2017). Comparison of baseline and post-concussion ImPACT test scores in young athletes with stimulant-treated and untreated ADHD. Physician and Sportsmedicine, 45(1), 1–10. https://doi.org/10.1080/00913847.2017.1248221

Gidley Larson, J. C., Flaro, L., Peterson, R. L., Connery, A. K., Baker, D. A., & Kirkwood, M. W. (2015). The medical symptom validity test measures effort not ability in children: A comparison between mild TBI and fetal alcohol spectrum disorder samples. Archives of Clinical Neuropsychology, 30(3), 192–199. https://doi.org/10.1093/arclin/acv012

Glaviano, N. R., Benson, S., Goodkin, H. P., Broshek, D. K., & Saliba, S. (2015). Baseline SCAT2 Assessment of Healthy Youth Student-Athletes: Preliminary Evidence for the Use of the Child-SCAT3 in Children Younger Than 13 Years. Clinical Journal of Sport Medicine, 25(4), 373–379. https://doi.org/10.1097/JSM.0000000000000154

Gorman, M., Hecht, S., Samborski, A., Lunos, S., Elias, S., & Stovitz, S. D. (2017). SCAT3 assessment of non-head injured and head injured athletes competing in a large international youth soccer tournament. Applied Neuropsychology: Child, 6(4), 364–368. https://doi.org/10.1080/21622965.2016.1210011

Green, C. M., Kirk, J. W., Connery, A. K., Baker, D. A., & Kirkwood, M. W. (2014). The use of the Rey 15-Item Test and recognition trial to evaluate noncredible effort after pediatric mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 36(3), 261–267. https://doi.org/10.1080/13803395.2013.879096

Higgins, K. L., Denney, R. L., & Maerlender, A. (2017). Sandbagging on the immediate post-concussion assessment and cognitive testing (impact) in a high school athlete population. Archives of Clinical Neuropsychology, 32(3), 259–266. https://doi.org/10.1093/arclin/acw108

Iverson, G. L., Silverberg, N. D., Mannix, R., Maxwell, B. A., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2015). Factors associated with concussion-like symptom reporting in high school athletes. JAMA Pediatrics, 169(12), 1132–1140. https://doi.org/10.1001/jamapediatrics.2015.2374

Kirk, J. W., Hutaff-Lee, C. F., Connery, A. K., Baker, D. A., & Kirkwood, M. W. (2014). The Relationship Between the Self-Report BASC-2 Validity Indicators and Performance Validity Test Failure After Pediatric Mild Traumatic Brain Injury. Assessment, 21(5), 562–569. https://doi.org/10.1177/1073191114520626

Kirkwood, M. W., Peterson, R. L., Connery, A. K., Baker, D. A., & Grubenhoff, J. A. (2014). Postconcussive Symptom Exaggeration After Pediatric Mild Traumatic Brain Injury. Pediatrics, 133(4), 643–650. https://doi.org/10.1542/peds.2013-3195

Kuhn, A. W., & Solomon, G. S. (2014). Supervision and computerized neurocognitive baseline test performance in high school athletes: An initial investigation. Journal of Athletic Training, 49(6), 800–805. https://doi.org/10.4085/1062-6050-49.3.66

Lichtenstein, J. D., Moser, R. S., & Schatz, P. (2014). Age and test setting affect the prevalence of invalid baseline scores on neurocognitive tests. American Journal of Sports Medicine, 42(2), 479–484. https://doi.org/10.1177/0363546513509225

Liller, K. D., Morris, B., Fillion, J., Yang, Y., & Bubu, O. M. (2017). Analysis of baseline computerized neurocognitive testing results among 5-11-year-old male and female children playing sports in recreational leagues in Florida. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091028

Lovell, M. R., & Solomon, G. S. (2013). Neurocognitive test performance and symptom reporting in cheerleaders with concussions. Journal of Pediatrics, 163(4), 1192–1195.e1. https://doi.org/10.1016/j.jpeds.2013.05.061

MacDonald, J., & Duerson, D. (2015). Reliability of a Computerized Neurocognitive Test in Baseline Concussion Testing of High School Athletes. Clinical Journal of Sport Medicine, 25(4), 367–372. https://doi.org/10.1097/JSM.0000000000000139

Mannix, R., Iverson, G. L., Maxwell, B., Atkins, J. E., Zafonte, R., & Berkner, P. D. (2014). Multiple prior concussions are associated with symptoms in high school athletes. Annals of Clinical and Translational Neurology, 1(6), 433–438. https://doi.org/10.1002/acn3.70

McGrath, N., Dinn, W. M., Collins, M. W., Lovell, M. R., Elbin, R. J., & Kontos, A. P. (2013). Post-exertion neurocognitive test failure among student-athletes following concussion. Brain Injury, 27(1), 103–113. https://doi.org/10.3109/02699052.2012.729282

McKay, C. D., Schneider, K. J., Brooks, B. L., Mrazik, M., & Emery, C. A. (2014). Baseline Evaluation in Youth Ice Hockey Players: Comparing Methods for Documenting Prior Concussions and Attention or Learning Disorders. Journal of Orthopaedic & Sports Physical Therapy, 44(5), 329–335. https://doi.org/10.2519/jospt.2014.5053

Moser, R. S., Schatz, P., Grosner, E., & Kollias, K. (2017). One year test–retest reliability of neurocognitive baseline scores in 10- to 12-year olds. Applied Neuropsychology: Child, 6(2), 166–171. https://doi.org/10.1080/21622965.2016.1138310

Nelson, L. D., Laroche, A. A., Pfaller, A. Y., Lerner, E. B., Hammeke, T. A., Randolph, C., … McCrea, M. A. (2015). Prospective, head-to-head study of three computerized neurocognitive assessment tools (CNTs): Reliability and validity for the assessment of sport-related concussion. Journal of the International Neuropsychological Society, 22(1), 24–37. https://doi.org/10.1017/S1355617715001101

Nelson, L. D., Loman, M. M., LaRoche, A. A., Furger, R. E., & McCrea, M. A. (2017). Baseline Performance and Psychometric Properties of the Child Sport Concussion Assessment Tool 3 (Child-SCAT3) in 5- to 13-year-old Athletes. Clinical Journal of Sport Medicine, 27(4), 381–387. https://doi.org/10.1097/JSM.0000000000000369

Nelson, L. D., Pfaller, A. Y., Rein, L. E., & McCrea, M. A. (2015). Rates and Predictors of Invalid Baseline Test Performance in High School and Collegiate Athletes for 3 Computerized Neurocognitive Tests: NAM,Axon Sports, and ImPACT. American Journal of Sports Medicine, 43(8), 2018–2026. https://doi.org/10.1177/0363546515587714

Ott, S., Schatz, P., Solomon, G., & Ryan, J. J. (2014). Neurocognitive performance and symptom profiles of spanish-speaking hispanic athletes on the impact test. Archives of Clinical Neuropsychology, 29(2), 152–163. https://doi.org/10.1093/arclin/act091

Pawlukiewicz, A., Yengo-Kahn, A. M., & Solomon, G. (2017). The effect of pretest exercise on baseline computerized neurocognitive test scores. Orthopaedic Journal of Sports Medicine, 5(10), 1–6. https://doi.org/10.1177/2325967117734496

Porter, S., Smith-Forrester, J., Alhajri, N., Kusch, C., Sun, J., Barrable, B., … Virji-Babul, N. (2017). The Child Sport Concussion Assessment Tool (Child SCAT3): Normative values and correspondence between child and parent symptom scores in male child athletes. BMJ Open Sport and Exercise Medicine, 3(1), 1–6. https://doi.org/10.1136/bmjsem-2015-000029

Reesman, J., Pineda, J., Carver, J., Brice, P. J., Andrew Zabel, T., & Schatz, P. (2016). Utility of the ImPACT test with deaf adolescents. Clinical Neuropsychologist, 30(2), 318–327. https://doi.org/10.1080/13854046.2016.1142613

Reynolds, E., Fazio, V. C., Sandel, N., Schatz, P., & Henry, L. C. (2016). Cognitive Development and the Immediate Postconcussion Assessment and Cognitive Testing: A Case for Separate Norms in Preadolescents. Applied Neuropsychology: Child, 5(4), 283–293. https://doi.org/10.1080/21622965.2015.1057637

Rieger, B. P., Lewandowski, L. J., Callahan, J. M., Spenceley, L., Truckenmiller, A., Gathje, R., & Miller, L. A. (2013). A prospective study of symptoms and neurocognitive outcomes in youth with concussion vs orthopaedic injuries. Brain Injury, 27(2), 169–178. https://doi.org/10.3109/02699052.2012.729290

Schatz, P., & Robertshaw, S. (2014). Comparing post-concussive neurocognitive test data to normative data presents risks for under-classifying “above average” athletes. Archives of Clinical Neuropsychology, 29(7), 625–632. https://doi.org/10.1093/arclin/acu041

Schatz, P., Kelley, T., Ott, S. D., Solomon, G. S., Elbin, R. J., Higgins, K., & Moser, R. S. (2014). Utility of repeated assessment after invalid baseline neurocognitive test performance. Journal of Athletic Training, 49(5), 659–664. https://doi.org/10.4085/1062-6050-49.3.37

Snedden, T. R., Brooks, M. A., Hetzel, S., & McGuine, T. (2017). Normative Values of the Sport Concussion Assessment Tool 3 (SCAT3) in High School Athletes. Clinical Journal of Sport Medicine, 27(5), 462–467. https://doi.org/http://dx.doi.org/10.1097/jsm.0000000000000389

Snyder, A. R., & Bauer, R. M. (2014). A normative study of the sport concussion assessment tool (SCAT2) in children and adolescents. Clinical Neuropsychologist, 28(7), 1091–1103. https://doi.org/10.1080/13854046.2014.952667

Tsushima, W. T., Shirakawa, N., & Geling, O. (2013). Neurocognitive functioning and symptom reporting of high school athletes following a single concussion. Applied Neuropsychology: Child, 2(1), 13–16. https://doi.org/10.1080/09084282.2011.643967

Tsushima, W. T., Siu, A. M., Pearce, A. M., Zhang, G., & Oshiro, R. S. (2016). Two-year Test-Retest Reliability of ImPACT in High School Athletes. Archives of Clinical Neuropsychology, 31(1), 105–111. https://doi.org/10.1093/arclin/acv066

Tsushima, W. T., Tsushima, V. G., Oshiro, R. O., & Murata, N. M. (2017). Role of Native Language in Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) of Youth Athletes. Archives of Clinical Neuropsychology, 32(4), 450–455. https://doi.org/10.1093/arclin/acx025

Vaughan, C. G., Gerst, E. H., Sady, M. D., Newman, J. B., & Gioia, G. A. (2014). The relation between testing environment and baseline performance in child and adolescent concussion assessment. American Journal of Sports Medicine, 42(7), 1716–1723. https://doi.org/10.1177/0363546514531732

Vernau, B. T., Grady, M. F., Goodman, A., Wiebe, D. J., Basta, L., Park, Y., … Master, C. L. (2015). Oculomotor and neurocognitive assessment of youth ice hockey players: Baseline associations and observations after concussion. Developmental Neuropsychology, 40(1), 7–11. https://doi.org/10.1080/87565641.2014.971955

Womble, M. N., Reynolds, E., Schatz, P., Shah, K. M., & Kontos, A. P. (2016). Test-Retest reliability of computerized neurocognitive testing in youth ice hockey players. Archives of Clinical Neuropsychology, 31(4), 305–312. https://doi.org/10.1093/arclin/acw011

Yengo-Kahn, A. M., & Solomon, G. (2015). Are psychotropic medications associated with differences in baseline neurocognitive assessment scores for young athletes? A pilot study. Physician and Sportsmedicine, 43(3), 227–235. https://doi.org/10.1080/00913847.2015.1071638

Zalneraitis, B. H., Yengo-Kahn, A. M., Pawlukiewicz, A. J., & Solomon, G. S. (2017). Self-reported history of seizure and baseline neurocognitive test performance in student-athletes: an initial investigation. Physician and Sportsmedicine, 45(4), 470–474. https://doi.org/10.1080/00913847.2017.1372035

Section B:

Managing Concussion Symptoms

Section C:

Biomarkers